自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

赖德发的博客

征途路上,星辰大海,交流微信:laidefa

  • 博客(3)
  • 资源 (1)
  • 论坛 (1)
  • 收藏
  • 关注

原创 【python 机器学习】机器学习算法之CatBoost

主要内容:一、算法背景二、CatBoost简介三、CatBoost的优点四、CatBoost的安装与使用五、CatBoost回归实战六、CatBoost调参模块七、CatBoost 参数详解一、算法背景:2017年俄罗斯的搜索巨头 Yandex 开源 Catboost 框架。Catboost(Categorical Features+Gradient Boosting)采用的策略...

2020-01-08 14:19:49 1154

原创 【python 机器学习】正态分布检验以及异常值处理3σ原则

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。使用K-S检验一个数列是否服从正态分布、两个数列是否服从相同的分布。下面介绍 Python 中常用的几种正态性检验方法:scipy.stats.kstest异常值是指样本中的个别值,其数值明显偏离其余的观测值。异常值也称离群点,异常值的分析也称为离群点的分析。在进行机器学习过程中,需要对数据集进行异...

2020-01-07 11:24:54 7035 2

原创 【深度学习 误差计算】10分钟了解下均方差和交叉熵损失函数

常见的误差计算函数有均方差、交叉熵、KL 散度、Hinge Loss 函数等,其中均方差函数和交叉熵函数在深度学习中比较常见,均方差主要用于回归问题,交叉熵主要用于分类问题。下面我们来深刻理解下这两个概念。1、均方差MSE。预测值与真实值之差的平方和,再除以样本量。均方差广泛应用在回归问题中,在分类问题中也可以应用均方差误差。2、交叉熵再介绍交叉熵损失函数之前,我们首先来介绍信息学中熵(...

2020-01-02 21:01:20 418

gbdt和xgboost算法详解

该文档详细介绍了机器学习算法中的GBDT和XGboost 两大神器

2018-01-24

开心果汁的留言板

发表于 2020-01-02 最后回复 2020-03-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除