自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

赖德发的博客

征途路上,星辰大海,交流微信:laidefa

  • 博客(21)
  • 资源 (1)
  • 论坛 (1)
  • 收藏
  • 关注

原创 【python 生成自己的二维码】推广二维码带log图片

如何安装?用pip安装pip install qrcode pip install pillow# encoding: utf-8import sysreload(sys)sys.setdefaultencoding('utf-8')# import qrcode# img=qrcode.make("农粒贷震撼上线~")# img.save("c:/test.png")"""生成带l

2017-10-27 20:28:00 3041

原创 【验签算法 HMAC-MD5】实现HMacMD5加密

什么是 HMAC-MD5?1、比如你和对方共享了一个密钥K,现在你要发消息给对方,既要保证消息没有被篡改,又要能证明信息确实是你本人发的,那么就把原信息和使用K计算的HMAC的值一起发过去。对方接到之后,使用自己手中的K把消息计算一下HMAC,如果和你发送的HMAC一致,那么可以认为这个消息既没有被篡改也没有冒充。2、MD5就是通过散列对要输出的数据进行摘要,接收到数据时,再同样进行MD5散列,与给

2017-10-26 16:44:00 8304 3

原创 【机器学习 数据预处理】fit_transform()和transform()的区别

# 从sklearn.preprocessing导入StandardScaler from sklearn.preprocessing import StandardScaler # 标准化数据,保证每个维度的特征数据方差为1,均值为0,使得预测结果不会被某些维度过大的特征值而主导 ss = StandardScaler() # fit_transform()先拟合数据,再标准化

2017-10-24 16:14:07 2129

原创 【神经网络 隐含层节点数的设置】如何设置神经网络隐藏层 的神经元个数

当训练集确定之后,输入层结点数和输出层结点数随之而确定,首先遇到的一个十分重要而又困难的问题是如何优化隐层结点数和隐层数。实验表明,如果隐层结点数过少,网络不能具有必要的学习能力和信息处理能力。反之,若过多,不仅会大大增加网络结构的复杂性(这一点对硬件实现的网络尤其重要),网络在学习过程中更易陷入局部极小点,而且会使网络的学习速度变得很慢。隐层结点数的选择问题一直受到神经网络研究工作者的高度重视。方

2017-10-24 14:25:07 63702 11

原创 【深度学习 框架】PaddlePaddle的安装

CPU版本安装 pip install paddlepaddleGPU版本安装 pip install paddlepaddle-gpu训练步骤 导入数据—->定义网络结构—->训练模型—->保存模型—->测试结果#coding:utf-8import osfrom PIL import Imageimport numpy as npimport paddle.v2 as paddle

2017-10-24 09:12:51 4617

原创 【python 神经网络】BP神经网络python实现-iris数据集分类

输入数据集iris: (只有两类Iris-virginica or Iris-versicolor. 100条)sepal_length sepal_width petal_length petal_width species7 3.2 4.7 1.4 Iris-versicolor6.4 3.2 4.5 1.5 Iris-versicolor6.9 3.1 4.9 1.5

2017-10-23 15:04:01 14214 9

原创 【python sklearn】kmeans算法运用

# -*- coding:utf-8*-import sysreload(sys)sys.setdefaultencoding('utf-8')import timetime1=time.time()import pandas as pdfrom sklearn.externals import joblibfrom sklearn.preprocessing import scale

2017-10-19 17:45:40 1998

原创 【python sklearn】决策树运用

数据形式(tree.csv):age look income orderly target older ugly low yes no young ugly high no no young handsome low no no young handsome high yes yes young handsome m

2017-10-19 17:35:19 814

原创 【mysql 字符串函数】MySQL中字符串匹配函数LOCATE和POSITION使用方法

1. 用法一LOCATE(substr,str) POSITION(substr IN str)函数返回子串substr在字符串str中第一次出现的位置。如果子串substr在str中不存在,返回值为0。mysql> SELECT LOCATE('bar', 'foobarbar'); -> 4 mysql> SELECT LOCATE('xbar', 'foobar'); -> 0 这个函数是大小

2017-10-18 17:26:26 694

原创 【python 爬虫】链家天津租房在售房源数据爬虫

爬取字段:户型、面积、朝向、小区、价格、url#-*-coding:utf-8-*-import sysreload(sys)sys.setdefaultencoding('utf-8')import timeimport requestsfrom lxml import etreeimport pandas as pdtime1=time.time()import reimpo

2017-10-16 11:40:43 1114

原创 【模型 区分度】神秘的KS值和GINI系数

有效性指标中的区分能力指标:KS(Kolmogorov-Smirnov):KS用于模型风险区分能力进行评估, 指标衡量的是好坏样本累计分部之间的差值。 好坏样本累计差异越大,KS指标越大,那么模型的风险区分能力越强。KS的计算步骤如下: 1. 计算每个评分区间的好坏账户数。 2. 计算每个评分区间的累计好账户数占总好账户数比率(good%)和累计坏账户数占总坏账户数比率(bad%)。 3.

2017-10-12 17:26:06 53645 1

原创 【web html】html 知识点

需要掌握部分掌握HTML的全部语法,他的主体结构,超链接及常用标记使用!1、HTML的语法(主要讲解HTML语法格式、文档注释、代码格式)2、HTML的基本机构(主要讲解的标记<html><head><title><body>)3、文档设置标记上-格式标记(主要讲解的标记<br><p><center><pre><li><ul><ol><dl><dt><dd><hr><div>)4、文档设置标记

2017-10-12 10:32:36 307

原创 【matlab 求极限】limit函数求极限

syms x;y1=(4*x^3-2*x^2+x)/(3*x^2+2*x);limit(y1,x,0)>> syms x;y1=(4*x^3-2*x^2+x)/(3*x^2+2*x);limit(y1,x,0)ans =1/2>>

2017-10-11 12:47:24 15236

原创 【python 可视化】pyecharts + Django 使用指南

本指南按照 Django 官方教程,通过完成一个 Django 小项目来说明如何在 Django 中使用 pyecharts。如果对 Django 还不太熟悉的开发者,可仔细阅读官方提供的最新文档。 Step 0: 使用新的 virtualenv 环境建议开发者使用 1.11.4 版本的 Django$ virtualenv --no-site-packages pyecharts-env$ s

2017-10-10 14:35:29 21139 8

原创 【python 可视化】pyecharts + Flask 使用指南

本指南会以一个小的 Flask 项目为例,说明如何在 Flask 中使用 pyecharts。请确保你已经安装 Flask,还没安装请执行 pip install flask 或其他方式安装。Step 0: 首先新建一个 Flask 项目Linux/macos 系统$ mkdir flask-echarts$ cd flask-echarts$ mkdir templatesWindows 系统

2017-10-10 14:11:05 17629 10

原创 【python 数据可视化】pyecharts的使用

Echarts是百度出的很有名 也很叼。 Echarts 是百度开源的一个数据可视化 JS 库。主要用于数据可视化。 pyecharts 是一个用于生成 Echarts 图表的类库。实际上就是 Echarts 与 Python 的对接。网址: https://github.com/chenjiandongx/pyecharts/blob/master/docs/zh-cn/docume...

2017-10-09 16:07:50 56062 19

原创 【python web】Flask+Echarts 实现动图图表

flask 是python web开发的微框架,Echarts酷炫的功能主要是javascript起作用,将两者结合起来,发挥的作用更大。下面将Echarts嵌套进Flask的html模板中。项目结构: 打开demo.py运行,点击console中的链接http://127.0.0.1:5000/ 就可以看到我们想要的动态图表。demo.py#coding:utf-8from flask impo

2017-10-09 15:46:35 27453 8

原创 【Python 走进NLP】NLP词频统计和处理停用词,可视化

# coding=utf-8import requestsimport sysreload(sys)sys.setdefaultencoding('utf-8')from lxml import etreeimport timetime1=time.time()import bs4import nltkfrom bs4 import BeautifulSoupfrom n

2017-10-09 11:45:11 2419

原创 【python 数据处理】分组求和、合并

# encoding: utf-8import sysreload(sys)sys.setdefaultencoding('utf-8')import timeimport pandas as pdimport xlsxwritertime1 = time.time()import numpy as np#############读取数据######################

2017-10-09 11:21:25 8187

原创 【python 爬虫】伪造UA字符串

写好爬虫的原则只有一条: 就是让你的抓取行为和用户访问网站的真实行为尽量一致。1、伪造UA字符串,每次请求都使用随机生成的UA。 为了减少复杂度,随机生成UA的功能通过第三方库fake-useragent实现pip install fake-useragent2、生成一个UA字符串只需要如下代码:核心代码:from fake_useragent import UserAgentua=UserA

2017-10-07 10:34:31 5284 2

原创 【linux 服务器运行情况】了解Linux服务器运行情况

1、free 在Linux下,使用free命令获取当前内存的使用情况[root@izbp1f0leha0lvmqfhigzpz code]# free -h total used free shared buff/cache availableMem: 1.8G 84M 17

2017-10-05 18:23:33 1064

gbdt和xgboost算法详解

该文档详细介绍了机器学习算法中的GBDT和XGboost 两大神器

2018-01-24

开心果汁的留言板

发表于 2020-01-02 最后回复 2020-03-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除