【DL--09】神经网络,需要知道的数学公式
置顶
开心果汁
2017-07-30 15:48:45
464
收藏
分类专栏:
数据科学--机器学习
最后发布:2017-07-30 15:48:45
首次发布:2017-07-30 15:48:45
版权声明:本文为博主原创文章,遵循<a href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank" rel="noopener"> CC 4.0 BY-SA </a>版权协议,转载请附上原文出处链接和本声明。
本文链接:
https://blog.csdn.net/u013421629/article/details/76387654
版权
推导数学公式:
点赞
评论
分享
x
海报分享
扫一扫,分享海报
收藏
打赏
打赏
开心果汁
你的鼓励将是我创作的最大动力
C币
余额
2C币
4C币
6C币
10C币
20C币
50C币
确定
举报
关注
关注
一键三连
点赞Mark关注该博主, 随时了解TA的最新博文
已标记关键词
清除标记
DL(1) -
神经网络
基本概念
英俊强健的博客
02-06
191
神经网络
基本概念神经元结构 神经元结构 神经元:
神经网络
的最小单元,每个神经元其实都是由两部分组成:数学模型(Wixi+bW_{i}x_{i}+bWixi+b)和激活函数h(t)h(t)h(t)。 如下图:单神经元网络,n个输入信号(图中是3个),这些信号通过带权重和偏移量的数学模型计算再经过激活函数处理,最终产生神经元的输出。(WWW 为权重,bbb 为偏移量 ,fff即hhh 为激...
插入表情
添加代码片
HTML/XML
objective-c
Ruby
PHP
C
C++
JavaScript
Python
Java
CSS
SQL
其它
还能输入
1000
个字符
“速评一下”
从入门到精通:卷积
神经网络
初学者指南
maweifei的博客
09-05
1万+
转载自:http://www.jiqizhixin.com/article/1363?utm_source=tuicool&utm_medium=referral 这是一篇向初学者讲解卷积
神经网络
的系列文章,机器之心编译了已经发表了的 Part 1 和 Part 2。此系列文章若有更新,机器之心依然会分享给大家。 Part 1:图像识别任务 介绍 卷积
深度
神经网络
结构以及Pre-Training的理解
weixin_34044273的博客
06-14
184
Logistic回归、传统多层
神经网络
1.1 线性回归、线性
神经网络
、Logistic/Softmax回归 线性回归是用于数据拟合的常规手段,其任务是优化目标函数:$h(\theta )=\theta+\theta_{1}x_{1}+\theta_{2}x_{2}+....\theta_{n}x_{n}$ 线性回归的求解法通常为两种: ①解优化多元一次方程(矩阵)的传统方法,在数值分析里...
零基础入门深度学习(5) - 循环
神经网络
04-11
327
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不
需要
太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有
国民度No.1,Python到底做了什么?
CSDN学院
01-20
1万+
毫无疑问,Python 是当下最火的编程语言之一。可以说 Python 的崛起,将编程提高了一个层次,它不再只是程序员专用,各个岗位都在学习 Python,导致普及度和国民度瞬间上升,Python 对整个行业来说都是极其有利的。 正如 TIOBE 官方评价:Python 无处不在,其实自 2018 年开始,各行各业便开始布局 Python。 在教育界, 1、自 2018 年 3 月起,在计算机二级考试加入了“Python 语言程序设计”科目; 2、2018 年,浙江省信息技术教材宣布弃用 VB 语言
DL-深度
神经网络
原理推导及PyTorch实现
千寻的博客
03-06
641
1.前向传播 引用一个网站的图: 具体来说,就是2行代码,图片中的f为激活函数,这里用sigmoid作为激活函数,事实上有很多其它的套路,这里只讲
神经网络
的数学原理及初级使用,不会做任何深入扩展: def feedforward(self, a): # a:input for b, w in zip(self.biases, self.weig...
CNN笔记:通俗理解卷积
神经网络
结构之法 算法之道
07-02
34万+
通俗理解卷积
神经网络
(cs231n与5月dl班课程笔记) 1 前言 2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”。 本博客内写过一些机器学习相关的文章,但上一...
深度学习与计算机视觉系列(9)_串一串
神经网络
之动手实现小例子
寒小阳
01-15
2万+
前面8小节,算从
神经网络
的结构、简单原理、数据准备与处理、神经元选择、损失函数选择等方面把
神经网络
过了一遍。这个部分我们打算把知识点串一串,动手实现一个简单的2维平面
神经网络
分类器,去分割平面上的不同类别样本点。为了循序渐进,我们打算先实现一个简单的线性分类器,然后再拓展到非线性的2层
神经网络
。我们可以看到简单的实现,能够有分隔程度远高于线性分类器的效果。
人工
神经网络
简介
网络资源是无限的
12-12
12万+
人工
神经网络
简介
ML&DL - TensorFlow2.1快速入门学习笔记01——
神经网络
计算
JasonLee
08-22
97
ML&DL - TensorFlow2.1快速入门学习笔记01——
神经网络
计算
李飞飞计算机视觉笔记(3)--反向传播与
神经网络
初步
tanglinjie的CSDN博客
02-13
501
当前梯度值:上一层传入当前层的梯度值 两层
神经网络
:除开输入层总共为2层的
神经网络
单层隐藏层的
神经网络
:与两层
神经网络
结构一致,我们描述
神经网络
的层数是通过有多少层的权值来定的,所以输入层不计入层数里面。 梯度计算 前一篇文章说了梯度计算有两种方法,一种数值方法,直接简单但速度慢,第二种就是解析方法,通过微积分进行计算,计算速度快,但有时候的结果是错误的,所以一般会进行梯度检查的操作。我们一...
DL基本知识(一)入门级卷积
神经网络
更木的博客
08-01
302
卷积
神经网络
入门介绍
BP算法
zhouchengyunew的专栏
03-22
4万+
<br />反向传播BP模型<br /> 学习是
神经网络
一种最重要也最令人注目的特点。在
神经网络
的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的
神经网络
模型都是和学习算 法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法.而有的算法可能可用于多种模型。不过,有时人们也称算法 为模型。 <br /> 自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学习算法。其中以在1986年Rumelhart等提出
神经网络
基本原理简明教程-0-基本函数导数公式
SoftwareTeacher的专栏
04-04
609
基本函数导数公式 Copyright © Microsoft Corporation. All rights reserved. 适用于License版权许可 更多微软人工智能学习资源,请见微软人工智能教育与学习共建社区 如何浏览本系列教程 由于里面包含了大量必要的
数学公式
,都是用LaTex格式编写的,所以: 如果使用浏览器在线观看的话,可以使用Chrome浏览器,加这个Math展示控件 ...
零基础入门深度学习(7) - 递归
神经网络
qq_27245709的博客
06-09
703
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不
需要
太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有
卷积
神经网络
(CNN)简易教程
TensorFlowNews
05-25
1548
作者|Renu Khandelwal 编译|VK 来源|Medium 让我们先来了解一下我们的大脑是如何识别物体的。我们将学习什么是CNN, CNN如何利用大脑的启发进行物体识别,CNN是如何工作的。 让我们来了解一下我们的大脑是如何识别图像的 根据诺贝尔奖获得者Hubel和Wiesel教授的说法,视觉区域V1由简单细胞和复杂细胞组成。简单的单元有助于特征检测,而复杂的单元则结合了来自小空间邻域的多个这样的局部特征。空间池有助于实现平移不变特征。 当我们看到一个新的图像时,我们可以从左到右和从上到下扫描图像
神经网络
解决Logistic回归问题及公式向量化推导
小太阳~
04-22
1822
一、Logistic问题描述 1、训练集和测试集表示 (1) 有m个训练样本,训练集表示为:{(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))}{(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))}\{(x^{(1)},y^{(1)}), (x^{(2)},y^{(2)}), ..., (x^{(m)},y^{(m)})\}。其向量化表...
深度学习与计算机视觉系列(8)_
神经网络
训练与注意点
寒小阳
01-15
4万+
在前一节当中我们讨论了
神经网络
静态的部分:包括
神经网络
结构、神经元类型、数据部分、损失函数部分等。这个部分我们集中讲讲动态的部分,主要是训练的事情,集中在实际工程实践训练过程中要注意的一些点,如何找到最合适的参数。
DL--
填坑系列(Back Propagation)
qq_37053885的博客
02-28
96
细细数算,在DL这条路上也走了有1年多了,走了很多弯路。感觉看了很多,做了很多,但是基础一直不是很牢固,所以写该博客的目的就是希望此次可以侧重从数学理论基础的角度,即要讲究通俗易懂又要能够进行
数学公式
的推导。 正题,本文要填的坑死Back Propagation,现在网上有各种各样的博客进行相关的介绍,所以这里没有必要再重复造轮子。主要对填坑的过程进行梳理,罗列一些比较好的文章。 1.首先
需要
通过...
神经网络
中的单层
神经网络
WaitForFlower
12-30
1751
文章目录一、
神经网络
1.概述1.1 结构1.2 神经元模型使用2. 单层
神经网络
2.1 感知器2.2 数学描述2.3 感知器分类效果2.4 单层
神经网络
表示2.5 单层
神经网络
训练算法2.6 单层
神经网络
中的计算公式表示 文章综合一下几位大佬的文章: 杨强AT南京: DL01-6: 单层
神经网络
企鹅号 - 轨道车辆: 技术篇:单层
神经网络
是什么,看完这篇文章你就懂了 一、
神经网络
1.概述 ...
©️2020 CSDN
皮肤主题: 编程工作室
设计师:CSDN官方博客
返回首页