无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程
在训练神经网络的过程中,为了能够使训练的网络有更高的准确率,更低的过拟合,通常需要大量的训练数据,但在实际工作中,大量数据并不是说有就有的,怎么办呢,通常解决这个问题的办法就是,使用一些手段,人为扩充数据集。本篇文章,将针对图像数据,提供一些扩展常用方法,相信这些方法能够满足大家对扩充图片数据集的需求。
方法1:利用keras生成器扩充图片数据集。
# -*- coding: utf-8 -*-
# 载入包
from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
import os
import time
# 定义扩充图片函数
def image_expansion(filepath,savefilepath,multiples=20):
"""
:param filepath: 图片路径
:param savefilepath: 扩充保存图片路径
:param multiples: 扩充倍数,默认扩充20倍
:return: 返回扩充后数据集
"""
# keras中可以通过keras.preprocessing.image.ImageDataGenerator类来实现
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
for parent, dirnames, filenames in os.walk(filepath):
for filename in filenames:
image_path=filepath+filename
print(image_path)
img = load_img(image_path)
x = img_to_array(img)
x = x.reshape((1,) + x.shape)
i = 1
for batch in datagen.flow(x, batch_size=1,
save_to_dir=savefilepath,
save_prefix='ticket',
save_format='jpg'):
print('正在扩充图片数据集第'+str(i)+'张')
i += 1
if i >multiples:
break
if __name__ == '__main__':
# 设置图片路径
filepath = 'F:/img_spam/ticket/origin_ticket/'
# 设置扩充保存图片路径
savefilepath = 'F:/img_spam/ticket/new_ticket/'
time1 = time.time()
image_expansion(filepath,savefilepath,multiples=5)
time2=time.time()
print('总共耗时:' + str(time2 - time1) + 's')
一下子扩充五倍数据集,multiples是扩充倍数,可自定义,默认是20倍、
方法2:利用pillow扩展数据集
# -*- coding: utf-8 -*-
import os
import time
from PIL import Image,ImageChops,ImageEnhance
def image_reversal(img,savefilepath,save_filename):
""" 图像翻转"""
lr=img.transpose(Image.FLIP_LEFT_RIGHT) # 左右翻转
ud=img.transpose(Image.FLIP_TOP_BOTTOM) # 上下翻转
lr.save(savefilepath+save_filename)
ud.save(savefilepath+save_filename)
def image_rotation(img,savefilepath,save_filename):
"""图像旋转"""
out1=img.rotate(40) # 旋转20度
out2=img.rotate(30) # 旋转30度
out1.save(savefilepath+save_filename)
out2.save(savefilepath+save_filename)
def image_translation(img,savefilepath,save_filename):
"""图像平移"""
out3=ImageChops.offset(img,20,0) # 只沿X轴平移
out4=ImageChops.offset(img,0,20) # 只沿y轴平移
out3.save(savefilepath+save_filename)
out4.save(savefilepath+save_filename)
def image_brightness(img,savefilepath,save_filename):
"""亮度调整"""
bri=ImageEnhance.Brightness(img)
bri_img1=bri.enhance(0.8) # 小于1为减弱
bri_img2=bri.enhance(1.2) # 大于1为增强
bri_img1.save(savefilepath+save_filename)
bri_img2.save(savefilepath+save_filename)
def image_chroma(img,savefilepath,save_filename):
"""色度调整"""
col = ImageEnhance.Color(img)
col_img1 = col.enhance(0.7) # 色度减弱
col_img2 = col.enhance(1.3) # 色度增强
col_img1.save(savefilepath+save_filename)
col_img2.save(savefilepath+save_filename)
def image_contrast(img,savefilepath,save_filename):
"""对比度调整"""
con=ImageEnhance.Contrast(img)
con_img1=con.enhance(0.7) # 对比度减弱
con_img2=con.enhance(1.3) # 对比度增强
con_img1.save(savefilepath+save_filename)
con_img2.save(savefilepath+save_filename)
def image_sharpness(img,savefilepath,save_filename):
"""锐度调整"""
sha = ImageEnhance.Sharpness(img)
sha_img1 = sha.enhance(0.5) # 锐度减弱
sha_img2 = sha.enhance(1.5) # 锐度增强
sha_img1.save(savefilepath+save_filename)
sha_img2.save(savefilepath+save_filename)
# 定义扩充图片函数
def image_expansion(filepath,savefilepath,save_prefix):
"""
:param filepath: 图片路径
:param savefilepath: 扩充保存图片路径
:param save_prefix: 图片前缀
:return: 图片扩充数据集
"""
i = 1
for parent, dirnames, filenames in os.walk(filepath):
for filename in filenames:
image_path=filepath+filename
print('正在扩充图片:%s' %filename)
try:
img=Image.open(image_path)
if img.mode == "P":
img = img.convert('RGB')
image_reversal(img,savefilepath,save_filename=save_prefix + str(i) + '.jpg')
i += 1
image_rotation(img,savefilepath,save_filename=save_prefix+str(i)+'.jpg')
i += 1
image_translation(img,savefilepath,save_filename=save_prefix+str(i)+'.jpg')
i += 1
image_brightness(img,savefilepath,save_filename=save_prefix+str(i)+'.jpg')
i += 1
image_chroma(img,savefilepath,save_filename=save_prefix+str(i)+'.jpg')
i += 1
image_contrast(img,savefilepath,save_filename=save_prefix+str(i)+'.jpg')
i += 1
image_sharpness(img,savefilepath,save_filename=save_prefix+str(i)+'.jpg')
i += 1
except Exception as e:
print(e)
pass
if __name__ == '__main__':
# 设置图片路径
filepath = 'E:/2019年/图像算法/ticketAndwetchat/datasets/train/ticket/'
# 设置扩充保存图片路径
savefilepath ='E:/2019年/图像算法/ticketAndwetchat/datasets/train/new_ticket/'
# 设置前缀图片名称
save_prefix='ticket_0_'
time1 = time.time()
image_expansion(filepath, savefilepath,save_prefix)
time2 = time.time()
print('总共耗时:' + str(time2 - time1) + 's')
数据增强一般建议采取:水平翻转,垂直翻转,放大,缩小,改变对比度和亮度等等措施达到目的。